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Abstract. The effect of second-nearest-neighbour hopping on the transition temperature and
the superconducting order parameter are investigated for d-wave superconductivity within the
framework of the extended Hubbard model for both weak- and strong-correlation cases. The
variation of the gap ratio with carrier concentration is studied. The isotope-shift exponent and
the pressure coefficient of the transition temperature are investigated, taking into consideration
isotopic mass and pressure dependences of the hopping and effective attractive interaction terms.
The predicted variation of the isotope-shift exponent and the pressure coefficient with doping
are in qualitative agreement with experimental findings for the Higbxides.

1. Introduction

Superconductivity in narrow-band systems with an effective local non-retarded attractive
interaction have been investigated extensively following the discovery of highxide
systems. Generally an extended Hubbard model in the dihdikit [1, 2] or a +—J (or
t—J—v) model in the largd7/ limit [3-5] are considered for such studies. Previously we
studied the superconducting phase diagram of an extended Hubbard model in both the large-
U and smallt limits within the mean-field approximation for extended s-wave and d-wave
pairing [2—4], and the variation of the gap ratio with doping for extended s-wave pairing
[6]. For d-wave pairing the effect of second-nearest-neighbour hopping on the transition
temperature and superconducting order parameter, and the variation of the superconducting
gap ratio with doping have not been properly addressed so far. Recent experiments [7, 8]
have revealed that the symmetry of the superconducting gap parameter ifi. ligstems is
either of d-wave or of highly anisotropic s-wave type. Thus the study of different properties
for a d-wave symmetry pairing has gained importance in the context of fiiglystems.

High-T. oxide systems exhibit an anomalous isotope effect. The isotope-shift exponent
() is large for underdoped materials, decreases with doping, and attains a minimum at
optimum doping [9]. The pressure coefficient of the transition temperature inZhigh-
oxide systems (hole doped) is found to be large in the underdoped region and small at
optimum doping. Negative values of the pressure coefficient have also been reported for
the overdoped region [10]. An important question that might be asked is that of whether the
observed isotope effect and the pressure effec.omay be obtained with a local pairing
interaction for the d-wave pairing without considering any phonon-mediated mechanism.

The object of the present work is to study the effect of the second-nearest-neighbour
hopping on the transition temperature, the superconducting order parameter, and the gap
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ratio for a tight-binding system with an effective intersite attractive interaction for both
weak- and strong-correlation cases. The isotope effect and the pressure effedoothe
d-wave pairing are also studied.

2. The model Hamiltonian and the equation for the superconducting gap

A single-band extended Hubbard model with nearest- and second-nearest-neighbour hopping

is given by
Zt,jcmcﬂ,—l—UZn,ml—vZn nj — Man Q)

i,j,o

wherey;; is the hopping matrix element connecting siteand j, which is equal ta (t2)
wheni andj are nearest (second-nearest) neighbolirss the on-site Coulomb repulsion,
and v is an effective attraction between fermions at nearest-neighbour sitesc;,) is
the creation (annihilation) operator for an electron at siteith spin o, n; is the number
operator, and is the chemical potential.

2.1. The weak-correlation case

In the weak-correlation cases one uses the standard Hartree-Fock (HF) approximation
to tackle the two-body interaction term. An effective Hamiltonian for studying super-
conductivity is then obtained as

H = (e — 1)c} cqo + Y _{WAL(q) — Uo)c_gycqy +HC) — C @)
q q

where

€, = —21(C09¢gya) + C09gya)) — 4t COYg a) COYqya)
= — 2t(cogg.a) + codgya) + 2r cogqa) COYq,a))

for a square lattice (the Fock correction to the K.E. is neglectedy; t,/¢. The super-
conducting order parameters; and A;(¢) are defined as

Ag = <Ci+TCi+¢) 3
Ax(g) =Y (et et 4
J
The prime on the summation in equation (4) indicates that the summation is restricted
to nearest-neighbour sites. The const@Gntompensates for the double counting in the
interaction energy within the HF approximation.

The equations for the chemical potential and the superconducting order parameter at
finite temperature may be obtained in the form

_1 _ 5 BE,
"= }q :[1 i tanr( = )} (5)
_1 _ 1 BE,
= Z, (vA1(q) UAO)ZE tan)—( 5 ) (6)

A)c(y) ( IT‘C;;X(V),L Z(UAl(q) UAO)_ tanl—(lg ) Cos%c(v)a) (7)
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where
§g =€ — 1 (8)
= \/E2 + (A§)? )
Af =vAi1(g) —UAo (10)
andn is the electron concentration. For d-wave pairidg, = —A, = A. In that case
equations (2) and (3) yieldg = 0, and the superconducting gap parameter becomes
Ag = 2vA(cogg.a) — C09g,a)). (12)

From equation (7) one obtains the self-consistent solution for the gap parameter for d-wave
pairing as

1
1=+ ;v(cos(qxa) cosq,a)) —tanr(ﬂ ) (12)
The corresponding equations for the transition temperature and the gap parameter at
T = 0 are obtained from equation (12) as (in unitskgf: 1)

1 3

1= % > v(cosgea) — cosgya))? (14)

1
7 2,/E2+ (A§)?
The superconducting gap, given in equation (11), has four nodes alorig the, lines,
and has d-wave symmetry. For a fixed filling, the maximum value of the gap is determined
by the maximum value of(cosk, — cosky)|. For 0 < r < 1, the maximum value of
|cogk,) — cogk,)| for a given chemical potential is given by

1+ % for 1/ (2r) < 2r
|costk,) — COStky) ax = 1= e (15)
1+ o for 2r < u/(2t) <2-—2r.
— 2r

The maximum value of the superconducting gap for a given filling is obtained by
determining A self-consistently from equation (14) and using the maximum value of
|cos(ky) — COgky)|.

2.2. The strong-correlation limit

In the largeV limit, the extended Hubbard model in a projected space with no doubly
occupied sites reduces to =&J—v model which may be written in theX-operator
representation [4]:

Z fij XO'OxOO' Z ’J (XO'UX{)'O' XO'O'xUO’) _ Z vij XUO’xG’ ‘o _ m Z iy

1,j.0 i,j,o

(16)

where J;; = 4tl?j'./U is the antiferromagnetic interaction induced by the strong correlation
through virtual hoppinguy;; is an additional intersite attractive interaction as considered for
the weak-correlation case.

X% = |a);(Bl: changes the state of the sitfrom [8) to |a). X7° (X%) and X7°

are the creation (annihilation) and number operators, respectively, for an electron with spin
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o at a sitei in a projected space with no doubly occupied sites. Following reference [4]
the equations for the chemical potential and the superconducting gap parameter for d-wave
pairing within the Hubbard-I decoupling approximation are given by

33 ()]

RERSYELS: _ 2 L oo B
1_NZq:< > )(J+v)(cos(qxa) cogq,a)) oF, tanr( 5 ) (18)

wherex = 1 — n is the hole concentration in the system, and
§g=¢€— 1 (19)

1
€ = (%)[—Zt(cosmxa) + codgya)) — 4t co9g,a) codgya)] (20)

E, = &2 + (A2 (21)
A$ = 2(J + v)A(codg.a) — COYgya)). (22)

In deriving equation (18) we have considered the effective attractive interactions to be
non-zero only for nearest-neighbour sites. The equationg fand the superconducting
gap parameter at zero temperature are obtained directly from equation (18). The summation
over ¢ is then replaced by an integration 4R—, space in the thermodynamic limit, and
the corresponding equations for the chemical potential, the transition temperature, and the
superconducting gap are solved self-consistently.

3. The isotope-shift exponent

The basic parameters in the model which govérrare the hopping matrix elements, the
effective attractive pairing interactiofv), and the chemical potential. If these parameters
were to remain unchanged on isotopic substitution, there would be no chafigeaimd this
would lead to zero isotope effect. Recently, experimental evidence for an increase in the
effective mass of the charge carrier on heavier isotopic substitution has been obtained for the
Y-123 system [11]. This suggests a decrease in the effective hopping of the charge carrier
with increasing isotopic masa4). In the La-214 system a change in the antiferromagnetic
(AF) transition temperature has been observed on isotopic substitution, by Zhao and Morris
[12]. They predicted a decrease in the AF interactidi With increasingM. The AF
interaction in a strongly correlated system is induced by virtual hopping and is proportional
to 2. So a decrease inwith increasingM may be inferred from the results of reference
[12]. Such a decrease in the effective hopping, with increagihgmay be realized if
the charge carriers have polaronic character. In fact, Alexandrov [13] utilized this concept
to explain the isotope effect in cuprates. However, for a pure polaronic superconductor,
where the isotopic mass dependence occurs only in the effective hopping, the isotope-shift
exponent is always negative [14].

For the effective attractive interactiow), there is, so far, no experimental evidence
of its variation with M. We assume here a variation ofand ¢ with M, and study the
role of these variations in the behaviour of the isotope-shift coefficient In a previous
paper we have made a similar study for the extended s-wave pairing [15], taking into
consideration isotopic mass dependence of batimd v. It may be mentioned that if the
effective attractive interactiorv) depends on the hopping integra),(thenv might change
with M through its dependence an provided thatr is a function of M as suggested by
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reference [10]. In fact, within the antiferromagnetic scenario, the effective nearest-neighbour
attraction is related to the antiferromagnetic interactiofi6], which is proportional ta?.
However, the mechanism of pairing in high-oxide systems is not known, and isotopic
mass dependence of the pairing interaction should be considered here as an assumption.
Differentiating equation (13) fof, with respect toM, one obtains the expression for the
isotopic-shift exponent as

olnT, alnz 1/ 9dInt dlnv
=— =— + = - (23)
olnM ainM  L\dInM dInM
where
1 « v(cogq,) — €0gqy))? € — Ik
L == sech| -2 ) 24
17N 2 4T, 2T, (24)

q

Equation (23) shows directly that iInz/9M = dInv/dIn M, then the isotope-shift
exponenty = —dInt/9In M is a constant, and does not depend on the chemical potential
or the density of states.

In the strong-correlation limit the equation for the transition temperature is obtained
directly from equation (18), and then the expression for the isotope-shift exponent can be
written as

alnT. alnt 2 1/ dlInt aln(J +v)
dlnM dlnM 1+x/)bL\0InM alnM
where
_ 1« (J +v)(cogq,) — codgy))? € — I
= > AT, sech T (26)

q

4. The pressure coefficient of the transition temperature

As pressure decreases the lattice spacing, it is expected that the hopping imegral (

the attractive interactionv] will increase on application of pressure. In high-oxide
systems, pressure also changes the carrier concentration of the system. Considering the
above facts, differentiation of equation (13) for with respect to pressure vyields for the
pressure coefficient

aInT. 9dlnt 1/9lnv dlnt I3 9n
Yp = =—+—\—— -+t —— (27)
ap ap I\ dp ap 1114 0p
where
1 ) — 2 1 — 1 _
L=ty v(cos(gx) — cosgy)) [ tanr<€q u) B _Secﬁ(eq M)}
N Z €, — U 2(eg — 1) 2T, 4T, 2T,
(28)

1 1 € — I
=5 2 S () )

and /; is given in equation (24).
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Figure 1. The variation of7,/W with the carrier concentratiom) for different values ofr
(=t2/1). Solid and dashed curves represent the results for= 1 and 2, respectively.
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Figure 2. A plot of 7" /W versusr for different values ofv/r.

5. Results and discussion

5.1. The role of the second-nearest-neighbour hopping as regards the superconducting
phase diagram and the gap ratio

The transition temperature and the superconducting order pararfwjerfor d-wave
pairing are evaluated numerically from equations (13) and (14) as functions of the carrier
concentrationn) for different values ofv/¢. It is evident from equation (13) that the value

of T/t for a fixed filling depends only on the ratig/¢, rather than on the absolute values

of v andr independently. In figure 1 we have shown the variatioT,gfW (W = 4r is the
half-bandwidth) with the carrier concentration for two values ofv/r and different values

of r = tp/t. It is well known that forr, = 0 the maximum in7. (7}") for d-wave pairing
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occurs when the Fermi level lies at the middle of the band [1, 2], which corresponds to
n = 1. This is evident from figure 1. For a square lattice the van Hove singularity (VHS) in
the DOS forz, = 0 lies at the middle of the band. Thus, the Fermi level coincides with the
VHS point at optimum doping, for whicl. is maximum. With the introduction ab, the

VHS point in the DOS shifts by#4 from the centre of the new band; the total bandwidth,
however, remains unchanged. As the VHS point shifts, the optimum doping concentration
for the d-wave pairing also shifts, arfd = 7" is obtained when the chemical potential
(the Fermi level) is close to the new VHS energy of the DOS. Figure 1 shows the shift
of the T, versusn plot with the introduction ofr,. Whenr, and: are of the same sign,

the superconducting phase diagram shifts to higher valuesasf compared to the = 0

case. Ifr, has the opposite sign, the phase diagram shifts to lower values lbfmay be
mentioned that for the same magnitudes.dbut opposite signs, thg€. versusn curves are
related by a mirror symmetry abouwt= 1. Forv/r = 2, it is found thatZ” remains almost
unchanged as is switched from O to @lz. A similar observation was made by Micnas

al [1] for the same value of/t. Forv/t = 1, T" increases with the introduction of.

As 1, is changed from O to .@¢, T" rises by 8.5% forv/t = 1, while for v/t = 4 (not
presented in the figure) we find thAf" decreases slightly for the same increase oflhus

the effect ofr = 1/t on T depends on the value of/z. In figure 2 we plot the variation

of T with r for different values ofv/r. Forr < 0.5, T" increases withr for v/r = 1

and 0.5, while forv/r = 2 the change ifT" is negligible. Forr > 0.5, T)" decreases with
increasing- for all cases. The fractional rise " up tor = 0.5 is higher for lower values

of v/t.
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<« 0.04
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Figure 3. The variation of the superconducting order parametgr\ith carrier concentration
(n) for different values of- (=t/t) for v/r = 1.

In figure 3 the variation of the superconducting order parametgm(th n is presented
for v/t = 1 for different values of. It shows a similar variation to th&. versusn curve,
as expected.

In figure 4 we plot the maximum value of the superconducting gap ratig;, (7,)
against the carrier concentration foft = 1. Forr = 0, the maximum value of 85,/ T, is
obtained as 4.39 fon = 0, i.e. atn = 1, whereT, has its maximum value. As the carrier
concentration is changed from half-filling, the gap ratio decreases, reaches a minimum value,
and then increases. For= 0.4, the maximum value of the gap ratio is obtained as 4.79
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Figure 4. A plot of the gap ratio(2A%,/T,) versusn for v/t = 1 andr = 0 and 0.4.
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Figure 5. The variation off./ W and A with the hole concentrationc} for a strongly correlated
system forv/r = 1 and different values of (=z2/1).

for a filling very near to the optimum doping (wheTg is maximum).

In figure 5 the variations of the transition temperature and the superconducting order
parameter with the hole carrier concentratian< 1 — n) are shown for the strong-correl-
ation case. For = 0, T, and A are maximum foru = 0, which corresponds to = 1/3
in the strong-correlation limit [3, 4]. With the introduction ef the superconducting
phase diagram shifts to higher or lower hole carrier densities, depending on the gign of
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Figure 6. The variation ofa versusn for dInt/dalnM = —0.5. The solid curves are for

v/t =1. dlnv/dInM = 0, —0.25, —0.5, and—0.75 for the curves a, b, ¢, and d respectively.
Dashed curvev/r =2 anddInv/dIn M = —0.75.
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Figure 7. A plot of « versusT,./T!" for dInt/dIn M = —0.5 andd Inv/d In M = —0.75. Solid
curve: v/t = 1; dashed curvev/t = 2; andx* represents the results for a strongly correlated
system forv/t = 1.

Comparing figures 3 and 5, it seems that the sign lohs the opposite effect in shifting the
phase diagram for the weak- and strong-correlation cases. However, this discrepancy is due
to the fact that as the hole carrier density (lecreases, the electron density (ncreases.

5.2. The isotope-shift exponent and the pressure coefficient

For determining the isotope-shift exponent and the pressure coefficient one has to select
valuesofdInz/aInM,dlnv/dInM (ordIn(J+v)/dIn M in the case of strong correlation),
alnt/dp, dlnv/dp, and dn/dp. Recent experiments indicate a change in the effective
mass of the charge carrier due to the isotopic mass substitution inThighstems [11].

Zhao and Morris [11] obtained a value 6fin(m*)/9InM ~ 0.6 for the Y-123 system,
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Figure 8. A plot of « versusT./T)" for v/t = 1 for different values ofr (=2/1).
dlnt/oInM = —0.05; (a)dInv/dInM = —0.10, (b)dInv/oInM = —0.15. Solid curves:

r = 0; dashed curvesr = 0.45. x and + represent the experimental results for La-214 and
Co-doped Y-123 systems, respectively (reference [9]).

where m* is the effective mass of the charge carrier aidis the mass of the oxygen
isotope. As the effective mass is inversely proportional to the hopping integral we take
dlnt/aInM = —0.5, guided by the above experiment. We assuihev/dIn M to be
a free parameter, and study the behaviouredbr different values ofd Inv/9In M for a
fixed value ofdInz/aInM. Fordlnt/dalnM = dlnv/dIn M, equation (23) yields that
a = —adlnz/daIn M. Under this conditione becomes independent of the filling and is a
constant as for BCS superconductors. In figure 6 we plot the variatian with » for
dlnv/alnM = —0.75, —0.5, —0.25, and 0, for a fixed value ofIn¢t/alInM = —0.5.
The horizontal line of constant magnitude corresponds for dInv/9InM = —0.5. For
dlnv/alnM = —0.75, « is positive and large for both the underdoped and overdoped
cases, and a minimum at optimum doping. Bdmv/9In M = —0.25 and O« is negative
in both the underdoped and overdoped regions, and has a maximum at optimum doping.
For highT, oxide systems the general characteristica afe that it is positive and large for
underdoped systems, and passes through a minimum at optimum doping. Thus the nature
ofa for dlnv/dInM < dlInz/9In M has a qualitative resemblance to that for the High-
oxide systems. In figure 7 we plot the variationeoWith 7,/ T for dInv/dIn M = —0.75
with dlnz/aIn M = —0.5 and forv/t = 1 and 2. It is seen that,,;, (the minimum value
of ) is lower for a higher value of. The values of, determined from equation (25) for a
strongly correlated system, are also shown in the same figure. It is found that the behaviour
of o as a function off, /T is the same for both the strong- and weak-correlation cases,
and is qualitatively consistent with the results for hifjhexide systems. The values of
a shown in figures 6 and 7 are, however, much higher than the experimentally observed
values for high?, oxide systems. From equation (23) it is evident that the magnitude of
« is directly proportional tad Inz/dIn M for a fixed ratio(@Ilnv/dIlnM)/(@Int/dIn M).
Hence the value of can be reduced to the order of the experimental valugs, < 0.1)
by taking appropriately small values 6fnz/9In M anddlnv/dIn M.

In figure 8 we show the variation af with 7,/T” for v = + = 1 and the weak-
correlation case, takingIn¢/dIln M = —0.05, for two values ofd Inv/dIn M (—0.1 and
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—0.15), and forr = 0 and 045. In the same figure, the experimental data points for La-
214 and Co-doped Y-123 systems, as taken from reference [9], are given. It appears that
there is a reasonable agreement between experimental data points and theoretical results
for r = 0.45. It may be mentioned, however, that a quantitative comparison would be
meaningful if accurate values of the (isotopic) mass-dependent parameters for the cuprates
could be determined. Further, it is a matter of controversy whether such a minimal model
as that considered here can describe the physics of cuprates. Our purpose is to just examine
the behaviour ofr for a model Hamiltonian which is widely studied in the context of high-

T, cuprates and to ascertain that a variatiorwofvith doping, similar to that observed for
cuprates, may be obtained if one assumes isotopic mass dependence of both the hopping
and the attractive interaction.

20+, AN
- ‘\‘ N
o 15— \‘\ ~ ~
T - >
& 10+ el Tl
o - \ \\~\\\‘ ™~
o s5- — eIl
& 0o e -
...5~ P — -
~ e
-—10 /n T T T T T T 1
0.00 0.25 0.50 Q.75 1.00
T/T"

Figure 9. A plot of y, versusT./T)" for v/t = 1. The values obInt/3P anddInv/dP are
1 and 2 in units of 102 GPa! respectively. The solid, short-dashed, and long-dashed curves
are foran/oP = 0,0.5, and 1 in units of 10? GPal.

To determine the values of the pressure coefficient we chd@dee/dp = 1 x
102 GPal anddInv/dp = 2 x 102 GPal. The pressure coefficient is studied for three
values ofdn/dp: 0, 0.5, and 1 in units of I¢ GPa . The former value is relevant for the
La-214 system where the carrier concentration remains almost unaffected by pressure, while
the latter values correspond to other hifjhsuperconductors where the carrier concentration
changes with pressure. In figure 9 we show the variation of the pressure coeffigignt (
with T./T!". v, is large and positive for underdoped systems, and decreases as the carrier
concentration increases up to optimum doping. Beydp = 0, y, is a minimum at
optimum doping, and in the overdoped region it retraces the path as for the underdoped
samples (this occurs because of the symmetry,airoundr = 1 in this case). A non-zero
value of 9n/dp breaks the symmetry of, aroundn = 1. Foron/dp > 0, y, is larger in
the underdoped region, and the rate of fallygfwith carrier concentration is higher than
in the an/dp = 0 case. In the overdoped regiop, is negative provided thaidn/op is
appreciable. In higl. oxides the pressure coefficient is positive and large for underdoped
samples, and decreases with increasing carrier concentration. Thus the behavigur of
obtained in our study agrees qualitatively with the experimental results forRigixide
systems.
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6. Summary

We have investigated the d-wave superconductivity in the framework of the extended
Hubbard model, with nearest-neighbou) énd second-nearest-neighbous) (hopping,
within mean-field approximations—namely the HF approximation for the weak-correlation
case and the&(-operator technique for the strong-correlation case.tfer0 the maximum

in T. and A occurs at zero chemical potential, which corresponds te 1 for the weak-
correlation case and = 1/3 for the strong-correlation case [4]. With the introduction of

t2, the superconducting phase diagram shifts to the higher- or lower-electron-concentration
side depending on whether the signegfz is positive or negative. It is found that the effect

of ; on the maximum transition temperatu®’() depends on the values pfandv/¢. For

low values ofv/¢, T!" rises withz, for |t,/¢| < 0.5. For higher values of, T" decreases

with increasingr,. The maximum superconducting gap ratio is found to increase from 4.39
to 4.79 as, is increased from 0 t0.0r for v/t = 1.

The isotope-shift exponent in this model is examined by assuming isotopic mass
dependence of andv. Fordlnv/dlnM < dlnt/dIn M, the behaviour of the isotope-
shift exponent is found to be similar in nature to that of highexide systems. The
isotope-shift exponent is large for underdoped systems, and attains a minimum at optimum
doping. It is interesting to note that we obtain very similar variations efith 7, for the
weak- and strong-correlation cases. For large valueg oélevant for highf, cuprates [7],
the theoretical curves far agree reasonably well with the experimental data points.

The pressure coefficient is investigated by assuming pressure dependenceasidn.

The pressure coefficient is found to be large for underdoped systems, and low at optimum
doping. Foran/dp > 0, the pressure coefficient may be negative in the overdoped region.
These results are qualitatively consistent with the experimental findings forThigystems.

References

[1] Micnas R, Ranninger J and Robaszkiewicz S 18%y. Mod. Phys62 113
[2] Ray D K, Konior J, Ols A M and Das A N 199Phys. RevB 43 5606
[3] Das A N, Ghosh B and Choudhury P 198%ysicaC 158 311
[4] Das A N, Konior J, Rg D K and Oles A M 1991Phys. RevB 44 7680 and references therein
[5] Dagotto E 1994Rev. Mod. Phys66 763
[6] Das A N, Sarkar S and Choudhury P 19PBys. RevB 48 16 673
[7] Wollman D A, Van Harlingen D J, Lee W C, Ginsberg D M and Leggett A J 1B89s. Rev. Letf71 2134
Tsuei C C, Kirtley J R, Chi C C, Yu-Jahnes L S, Gupta A, Shaw T $& and Ketche M B 1994 Phys.
Rev. Lett.73 593
[8] Shen Z Xet al 1993Phys. Rev. Lettr0 1553
[9] Frandk J P 1994Physical Properties of High-Temperature Superconductivity IV, ed D M Ginsberg
(Singapore: World Scientific) p 189
[10] Schilling J S and Klotz S 199Physical Properties of High-Temperature Superconductivitylll, ed D M
Ginsberg (Singapore: World Scientific) p 59
[11] Zhao Guo-meng and MogiD E 1995Phys. RevB 51 16 487
[12] Zhao Guo-meng, SiigK K and Morris D E 1994Phys. RevB 50 4112
[13] Alexandrosr A S 1992Phys. RevB 46 14932
[14] Banerjee S, DaiA N and Ray D K 1996°hys. Lett214A 89
[15] Banerjee S and BaA N 1996J. Phys.: Condens. Matte¥ 11131
[16] Dagotto E, Nazarenko A and Moreo A 198%ys. Rev. Let{r4 310



