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effect, and the pressure effect
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Abstract. The effect of second-nearest-neighbour hopping on the transition temperature and
the superconducting order parameter are investigated for d-wave superconductivity within the
framework of the extended Hubbard model for both weak- and strong-correlation cases. The
variation of the gap ratio with carrier concentration is studied. The isotope-shift exponent and
the pressure coefficient of the transition temperature are investigated, taking into consideration
isotopic mass and pressure dependences of the hopping and effective attractive interaction terms.
The predicted variation of the isotope-shift exponent and the pressure coefficient with doping
are in qualitative agreement with experimental findings for the high-Tc oxides.

1. Introduction

Superconductivity in narrow-band systems with an effective local non-retarded attractive
interaction have been investigated extensively following the discovery of high-Tc oxide
systems. Generally an extended Hubbard model in the small-U limit [1, 2] or a t–J (or
t–J–v) model in the large-U limit [3–5] are considered for such studies. Previously we
studied the superconducting phase diagram of an extended Hubbard model in both the large-
U and small-U limits within the mean-field approximation for extended s-wave and d-wave
pairing [2–4], and the variation of the gap ratio with doping for extended s-wave pairing
[6]. For d-wave pairing the effect of second-nearest-neighbour hopping on the transition
temperature and superconducting order parameter, and the variation of the superconducting
gap ratio with doping have not been properly addressed so far. Recent experiments [7, 8]
have revealed that the symmetry of the superconducting gap parameter in high-Tc systems is
either of d-wave or of highly anisotropic s-wave type. Thus the study of different properties
for a d-wave symmetry pairing has gained importance in the context of high-Tc systems.

High-Tc oxide systems exhibit an anomalous isotope effect. The isotope-shift exponent
(α) is large for underdoped materials, decreases with doping, and attains a minimum at
optimum doping [9]. The pressure coefficient of the transition temperature in high-Tc
oxide systems (hole doped) is found to be large in the underdoped region and small at
optimum doping. Negative values of the pressure coefficient have also been reported for
the overdoped region [10]. An important question that might be asked is that of whether the
observed isotope effect and the pressure effect onTc may be obtained with a local pairing
interaction for the d-wave pairing without considering any phonon-mediated mechanism.

The object of the present work is to study the effect of the second-nearest-neighbour
hopping on the transition temperature, the superconducting order parameter, and the gap
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ratio for a tight-binding system with an effective intersite attractive interaction for both
weak- and strong-correlation cases. The isotope effect and the pressure effect onTc for the
d-wave pairing are also studied.

2. The model Hamiltonian and the equation for the superconducting gap

A single-band extended Hubbard model with nearest- and second-nearest-neighbour hopping
is given by

H = −
∑
i,j,σ

tij c
+
iσ cjσ + U

∑
i

ni↑ni↓ − v
∑
i,j

ninj − µ
∑
i

ni (1)

where tij is the hopping matrix element connecting sitesi and j , which is equal tot (t2)
wheni andj are nearest (second-nearest) neighbours.U is the on-site Coulomb repulsion,
and v is an effective attraction between fermions at nearest-neighbour sites.c+iσ (ciσ ) is
the creation (annihilation) operator for an electron at sitei with spin σ , ni is the number
operator, andµ is the chemical potential.

2.1. The weak-correlation case

In the weak-correlation cases one uses the standard Hartree-Fock (HF) approximation
to tackle the two-body interaction term. An effective Hamiltonian for studying super-
conductivity is then obtained as

H =
∑
q

(εq − µ)c+qσ cqσ +
∑
q

{(v11(q)− U10)c−q↓cq↑ + HC} − C (2)

where

εq = −2t (cos(qxa)+ cos(qya))− 4t2 cos(qxa) cos(qya)

= − 2t (cos(qxa)+ cos(qya)+ 2r cos(qxa) cos(qya))

for a square lattice (the Fock correction to the K.E. is neglected);r = t2/t . The super-
conducting order parameters10 and11(q) are defined as

10 = 〈c+i↑c+i↓〉 (3)

11(q) =
∑
j

′〈c+i↑c+j↓〉eiqRij . (4)

The prime on the summation in equation (4) indicates that the summation is restricted
to nearest-neighbour sites. The constantC compensates for the double counting in the
interaction energy within the HF approximation.

The equations for the chemical potential and the superconducting order parameter at
finite temperature may be obtained in the form

n = 1

N

∑
q

[
1− ξq

Eq
tanh

(
βEq

2

)]
(5)

10 = 1

N

∑
q

(v11(q)− U10)
1

2Eq
tanh

(
βEq

2

)
(6)

1x(y) = 〈c+i↑c+i±x(y)↓〉 =
1

N

∑
q

(v11(q)− U10)
1

2Eq
tanh

(
βEq

2

)
cos(qx(y)a) (7)
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where

ξq = εq − µ (8)

Eq =
√
ξ2
q + (1g

q)2 (9)

1g
q = v11(q)− U10 (10)

and n is the electron concentration. For d-wave pairing,1x = −1y = 1. In that case
equations (2) and (3) yield10 = 0, and the superconducting gap parameter becomes

1g
q = 2v1(cos(qxa)− cos(qya)). (11)

From equation (7) one obtains the self-consistent solution for the gap parameter for d-wave
pairing as

1= 1

N

∑
q

v(cos(qxa)− cos(qya))
2 1

2Eq
tanh

(
βEq

2

)
. (12)

The corresponding equations for the transition temperature and the gap parameter at
T = 0 are obtained from equation (12) as (in units ofkB = 1)

1= 1

N

∑
q

v(cos(qxa)− cos(qya))
2 1

2ξq
tanh

(
ξq

2Tc

)
(13)

1= 1

N

∑
q

v(cos(qxa)− cos(qya))
2 1

2
√
ξ2
q + (1g

q)2
. (14)

The superconducting gap, given in equation (11), has four nodes along thekx = ky lines,
and has d-wave symmetry. For a fixed filling, the maximum value of the gap is determined
by the maximum value of|(coskx − cosky)|. For 0 6 r 6 1, the maximum value of
|cos(kx)− cos(ky)| for a given chemical potential is given by

|cos(kx)− cos(ky)|max =


1+ 1+ µ/(2t)

1+ 2r
for µ/(2t) 6 2r

1+ 1− µ/(2t)
1− 2r

for 2r 6 µ/(2t) 6 2− 2r.
(15)

The maximum value of the superconducting gap for a given filling is obtained by
determining1 self-consistently from equation (14) and using the maximum value of
|cos(kx)− cos(ky)|.

2.2. The strong-correlation limit

In the large-U limit, the extended Hubbard model in a projected space with no doubly
occupied sites reduces to at–J–v model which may be written in theX-operator
representation [4]:

H = −
∑
1,j,σ

tijX
σ0
i X

0σ
j −

∑
i,j,σ

Jij

4
(Xσσi Xσ̄ σ̄j −Xσσ̄i Xσ̄σj )−

∑
i,j

vijX
σσ
i Xσ

′σ ′
j − µ

∑
iσ

niσ

(16)

whereJij = 4t2ij /U is the antiferromagnetic interaction induced by the strong correlation
through virtual hopping.vij is an additional intersite attractive interaction as considered for
the weak-correlation case.

X
αβ

i = |α〉i〈β|i changes the state of the sitei from |β〉 to |α〉. Xσ0
i (X0σ

i ) andXσσi
are the creation (annihilation) and number operators, respectively, for an electron with spin
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σ at a sitei in a projected space with no doubly occupied sites. Following reference [4]
the equations for the chemical potential and the superconducting gap parameter for d-wave
pairing within the Hubbard-I decoupling approximation are given by

n = 1

N

∑
q

(
1+ x

2

)[
1− ξq

Eq
tanh

(
βEq

2

)]
(17)

1= 1

N

∑
q

(
1+ x

2

)
(J + v)(cos(qxa)− cos(qya))

2 1

2Eq
tanh

(
βEq

2

)
(18)

wherex = 1− n is the hole concentration in the system, and

ξq = εq − µ (19)

εq =
(

1+ x
2

)
[−2t (cos(qxa)+ cos(qya))− 4t2 cos(qxa) cos(qya)] (20)

Eq =
√
ξ2
q + (1g

q)2 (21)

1g
q = 2(J + v)1(cos(qxa)− cos(qya)). (22)

In deriving equation (18) we have considered the effective attractive interactions to be
non-zero only for nearest-neighbour sites. The equations forTc and the superconducting
gap parameter at zero temperature are obtained directly from equation (18). The summation
over q is then replaced by an integration inqx–qy space in the thermodynamic limit, and
the corresponding equations for the chemical potential, the transition temperature, and the
superconducting gap are solved self-consistently.

3. The isotope-shift exponent

The basic parameters in the model which governTc are the hopping matrix elements, the
effective attractive pairing interaction(v), and the chemical potential. If these parameters
were to remain unchanged on isotopic substitution, there would be no change inTc, and this
would lead to zero isotope effect. Recently, experimental evidence for an increase in the
effective mass of the charge carrier on heavier isotopic substitution has been obtained for the
Y-123 system [11]. This suggests a decrease in the effective hopping of the charge carrier
with increasing isotopic mass (M). In the La-214 system a change in the antiferromagnetic
(AF) transition temperature has been observed on isotopic substitution, by Zhao and Morris
[12]. They predicted a decrease in the AF interaction (J ) with increasingM. The AF
interaction in a strongly correlated system is induced by virtual hopping and is proportional
to t2. So a decrease int with increasingM may be inferred from the results of reference
[12]. Such a decrease in the effective hopping, with increasingM, may be realized if
the charge carriers have polaronic character. In fact, Alexandrov [13] utilized this concept
to explain the isotope effect in cuprates. However, for a pure polaronic superconductor,
where the isotopic mass dependence occurs only in the effective hopping, the isotope-shift
exponent is always negative [14].

For the effective attractive interaction(v), there is, so far, no experimental evidence
of its variation withM. We assume here a variation ofv and t with M, and study the
role of these variations in the behaviour of the isotope-shift coefficient(α). In a previous
paper we have made a similar study for the extended s-wave pairing [15], taking into
consideration isotopic mass dependence of botht and v. It may be mentioned that if the
effective attractive interaction (v) depends on the hopping integral (t), thenv might change
with M through its dependence ont , provided thatt is a function ofM as suggested by
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reference [10]. In fact, within the antiferromagnetic scenario, the effective nearest-neighbour
attraction is related to the antiferromagnetic interactionJ [16], which is proportional tot2.
However, the mechanism of pairing in high-Tc oxide systems is not known, and isotopic
mass dependence of the pairing interaction should be considered here as an assumption.
Differentiating equation (13) forTc with respect toM, one obtains the expression for the
isotopic-shift exponent as

α = − ∂ ln Tc
∂ lnM

= − ∂ ln t

∂ lnM
+ 1

I1

(
∂ ln t

∂ lnM
− ∂ ln v

∂ lnM

)
(23)

where

I1 = 1

N

∑
q

v(cos(qx)− cos(qy))2

4Tc
sech2

(
εq − µ

2Tc

)
. (24)

Equation (23) shows directly that if∂ ln t/∂M = ∂ ln v/∂ lnM, then the isotope-shift
exponentα = −∂ ln t/∂ lnM is a constant, and does not depend on the chemical potential
or the density of states.

In the strong-correlation limit the equation for the transition temperature is obtained
directly from equation (18), and then the expression for the isotope-shift exponent can be
written as

α = − ∂ ln Tc
∂ lnM

= − ∂ ln t

∂ lnM
+
(

2

1+ x
)

1

I2

(
∂ ln t

∂ lnM
− ∂ ln(J + v)

∂ lnM

)
(25)

where

I2 = 1

N

∑
q

(J + v)(cos(qx)− cos(qy))2

4Tc
sech2

(
εq − µ

2Tc

)
. (26)

4. The pressure coefficient of the transition temperature

As pressure decreases the lattice spacing, it is expected that the hopping integral (t) and
the attractive interaction (v) will increase on application of pressure. In high-Tc oxide
systems, pressure also changes the carrier concentration of the system. Considering the
above facts, differentiation of equation (13) forTc with respect to pressure yields for the
pressure coefficient

γp = ∂ ln Tc
∂p

= ∂ ln t

∂p
+ 1

I1

(
∂ ln v

∂p
− ∂ ln t

∂p

)
+ I3

I1I4

∂n

∂p
(27)

where

I3 = 1

N

∑
q

v(cos(qx)− cos(qy))2

εq − µ
[

1

2(εq − µ) tanh

(
εq − µ

2Tc

)
− 1

4Tc
sech2

(
εq − µ

2Tc

)]
(28)

I4 = 1

N

∑
q

(
1

2Tc

)
sech2

(
εq − µ

2Tc

)
(29)

andI1 is given in equation (24).
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Figure 1. The variation ofTc/W with the carrier concentration (n) for different values ofr
(=t2/t). Solid and dashed curves represent the results forv/t = 1 and 2, respectively.

Figure 2. A plot of T mc /W versusr for different values ofv/t .

5. Results and discussion

5.1. The role of the second-nearest-neighbour hopping as regards the superconducting
phase diagram and the gap ratio

The transition temperature and the superconducting order parameter(1) for d-wave
pairing are evaluated numerically from equations (13) and (14) as functions of the carrier
concentration(n) for different values ofv/t . It is evident from equation (13) that the value
of Tc/t for a fixed filling depends only on the ratiov/t , rather than on the absolute values
of v andt independently. In figure 1 we have shown the variation ofTc/W (W = 4t is the
half-bandwidth) with the carrier concentration(n) for two values ofv/t and different values
of r = t2/t . It is well known that fort2 = 0 the maximum inTc (T mc ) for d-wave pairing
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occurs when the Fermi level lies at the middle of the band [1, 2], which corresponds to
n = 1. This is evident from figure 1. For a square lattice the van Hove singularity (VHS) in
the DOS fort2 = 0 lies at the middle of the band. Thus, the Fermi level coincides with the
VHS point at optimum doping, for whichTc is maximum. With the introduction oft2, the
VHS point in the DOS shifts by 4t2 from the centre of the new band; the total bandwidth,
however, remains unchanged. As the VHS point shifts, the optimum doping concentration
for the d-wave pairing also shifts, andTc = T mc is obtained when the chemical potential
(the Fermi level) is close to the new VHS energy of the DOS. Figure 1 shows the shift
of the Tc versusn plot with the introduction oft2. When t2 and t are of the same sign,
the superconducting phase diagram shifts to higher values ofn as compared to thet2 = 0
case. Ift2 has the opposite sign, the phase diagram shifts to lower values ofn. It may be
mentioned that for the same magnitudes oft2 but opposite signs, theTc versusn curves are
related by a mirror symmetry aboutn = 1. Forv/t = 2, it is found thatT mc remains almost
unchanged ast2 is switched from 0 to 0.4t . A similar observation was made by Micnaset
al [1] for the same value ofv/t . For v/t = 1, T mc increases with the introduction oft2.
As t2 is changed from 0 to 0.4t , T mc rises by 8.5% forv/t = 1, while for v/t = 4 (not
presented in the figure) we find thatT mc decreases slightly for the same increase oft2. Thus
the effect ofr = t2/t on T mc depends on the value ofv/t . In figure 2 we plot the variation
of T mc with r for different values ofv/t . For r 6 0.5, T mc increases withr for v/t = 1
and 0.5, while forv/t = 2 the change inT mc is negligible. Forr > 0.5, T mc decreases with
increasingr for all cases. The fractional rise inT mc up to r = 0.5 is higher for lower values
of v/t .

Figure 3. The variation of the superconducting order parameter (1) with carrier concentration
(n) for different values ofr (=t2/t) for v/t = 1.

In figure 3 the variation of the superconducting order parameter (1) with n is presented
for v/t = 1 for different values ofr. It shows a similar variation to theTc versusn curve,
as expected.

In figure 4 we plot the maximum value of the superconducting gap ratio (21
g
m/Tc)

against the carrier concentration forv/t = 1. For r = 0, the maximum value of 21g
m/Tc is

obtained as 4.39 forµ = 0, i.e. atn = 1, whereTc has its maximum value. As the carrier
concentration is changed from half-filling, the gap ratio decreases, reaches a minimum value,
and then increases. Forr = 0.4, the maximum value of the gap ratio is obtained as 4.79
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Figure 4. A plot of the gap ratio(21gm/Tc) versusn for v/t = 1 andr = 0 and 0.4.

Figure 5. The variation ofTc/W and1 with the hole concentration (x) for a strongly correlated
system forv/t = 1 and different values ofr (=t2/t).

for a filling very near to the optimum doping (whereTc is maximum).
In figure 5 the variations of the transition temperature and the superconducting order

parameter with the hole carrier concentration (x = 1− n) are shown for the strong-correl-
ation case. Forr = 0, Tc and1 are maximum forµ = 0, which corresponds tox = 1/3
in the strong-correlation limit [3, 4]. With the introduction ofr, the superconducting
phase diagram shifts to higher or lower hole carrier densities, depending on the sign ofr.
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Figure 6. The variation ofα versusn for ∂ ln t/∂ lnM = −0.5. The solid curves are for
v/t = 1. ∂ ln v/∂ lnM = 0,−0.25,−0.5, and−0.75 for the curves a, b, c, and d respectively.
Dashed curve:v/t = 2 and∂ ln v/∂ lnM = −0.75.

Figure 7. A plot of α versusTc/T mc for ∂ ln t/∂ lnM = −0.5 and∂ ln v/∂ lnM = −0.75. Solid
curve: v/t = 1; dashed curve:v/t = 2; and∗ represents the results for a strongly correlated
system forv/t = 1.

Comparing figures 3 and 5, it seems that the sign ofr has the opposite effect in shifting the
phase diagram for the weak- and strong-correlation cases. However, this discrepancy is due
to the fact that as the hole carrier density (x) decreases, the electron density (n) increases.

5.2. The isotope-shift exponent and the pressure coefficient

For determining the isotope-shift exponent and the pressure coefficient one has to select
values of∂ ln t/∂ lnM, ∂ ln v/∂ lnM (or ∂ ln(J+v)/∂ lnM in the case of strong correlation),
∂ ln t/∂p, ∂ ln v/∂p, and ∂n/∂p. Recent experiments indicate a change in the effective
mass of the charge carrier due to the isotopic mass substitution in high-Tc systems [11].
Zhao and Morris [11] obtained a value of∂ ln(m∗)/∂ lnM ∼ 0.6 for the Y-123 system,
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Figure 8. A plot of α versus Tc/T mc for v/t = 1 for different values ofr (=t2/t).
∂ ln t/∂ lnM = −0.05; (a) ∂ ln v/∂ lnM = −0.10, (b) ∂ ln v/∂ lnM = −0.15. Solid curves:
r = 0; dashed curves:r = 0.45. ∗ and+ represent the experimental results for La-214 and
Co-doped Y-123 systems, respectively (reference [9]).

wherem∗ is the effective mass of the charge carrier andM is the mass of the oxygen
isotope. As the effective mass is inversely proportional to the hopping integral we take
∂ ln t/∂ lnM = −0.5, guided by the above experiment. We assume∂ ln v/∂ lnM to be
a free parameter, and study the behaviour ofα for different values of∂ ln v/∂ lnM for a
fixed value of∂ ln t/∂ lnM. For ∂ ln t/∂ lnM = ∂ ln v/∂ lnM, equation (23) yields that
α = −∂ ln t/∂ lnM. Under this condition,α becomes independent of the filling and is a
constant as for BCS superconductors. In figure 6 we plot the variation ofα with n for
∂ ln v/∂ lnM = −0.75,−0.5,−0.25, and 0, for a fixed value of∂ ln t/∂ lnM = −0.5.
The horizontal line of constant magnitude corresponds toα for ∂ ln v/∂ lnM = −0.5. For
∂ ln v/∂ lnM = −0.75, α is positive and large for both the underdoped and overdoped
cases, and a minimum at optimum doping. For∂ ln v/∂ lnM = −0.25 and 0,α is negative
in both the underdoped and overdoped regions, and has a maximum at optimum doping.
For high-Tc oxide systems the general characteristics ofα are that it is positive and large for
underdoped systems, and passes through a minimum at optimum doping. Thus the nature
of α for ∂ ln v/∂ lnM < ∂ ln t/∂ lnM has a qualitative resemblance to that for the high-Tc
oxide systems. In figure 7 we plot the variation ofα with Tc/T mc for ∂ ln v/∂ lnM = −0.75
with ∂ ln t/∂ lnM = −0.5 and forv/t = 1 and 2. It is seen thatαmin (the minimum value
of α) is lower for a higher value ofv. The values ofα, determined from equation (25) for a
strongly correlated system, are also shown in the same figure. It is found that the behaviour
of α as a function ofTc/T mc is the same for both the strong- and weak-correlation cases,
and is qualitatively consistent with the results for high-Tc oxide systems. The values of
α shown in figures 6 and 7 are, however, much higher than the experimentally observed
values for high-Tc oxide systems. From equation (23) it is evident that the magnitude of
α is directly proportional to∂ ln t/∂ lnM for a fixed ratio(∂ ln v/∂ lnM)/(∂ ln t/∂ lnM).
Hence the value ofα can be reduced to the order of the experimental values (αmin 6 0.1)
by taking appropriately small values of∂ ln t/∂ lnM and∂ ln v/∂ lnM.

In figure 8 we show the variation ofα with Tc/T
m
c for v = t = 1 and the weak-

correlation case, taking∂ ln t/∂ lnM = −0.05, for two values of∂ ln v/∂ lnM (−0.1 and
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−0.15), and forr = 0 and 0.45. In the same figure, the experimental data points for La-
214 and Co-doped Y-123 systems, as taken from reference [9], are given. It appears that
there is a reasonable agreement between experimental data points and theoretical results
for r = 0.45. It may be mentioned, however, that a quantitative comparison would be
meaningful if accurate values of the (isotopic) mass-dependent parameters for the cuprates
could be determined. Further, it is a matter of controversy whether such a minimal model
as that considered here can describe the physics of cuprates. Our purpose is to just examine
the behaviour ofα for a model Hamiltonian which is widely studied in the context of high-
Tc cuprates and to ascertain that a variation ofα with doping, similar to that observed for
cuprates, may be obtained if one assumes isotopic mass dependence of both the hopping
and the attractive interaction.

Figure 9. A plot of γp versusTc/T mc for v/t = 1. The values of∂ ln t/∂P and∂ ln v/∂P are
1 and 2 in units of 10−2 GPa−1 respectively. The solid, short-dashed, and long-dashed curves
are for∂n/∂P = 0, 0.5, and 1 in units of 10−2 GPa−1.

To determine the values of the pressure coefficient we choose∂ ln t/∂p = 1 ×
10−2 GPa−1 and∂ ln v/∂p = 2× 10−2 GPa−1. The pressure coefficient is studied for three
values of∂n/∂p: 0, 0.5, and 1 in units of 10−2 GPa−1. The former value is relevant for the
La-214 system where the carrier concentration remains almost unaffected by pressure, while
the latter values correspond to other high-Tc superconductors where the carrier concentration
changes with pressure. In figure 9 we show the variation of the pressure coefficient (γp)
with Tc/T mc . γp is large and positive for underdoped systems, and decreases as the carrier
concentration increases up to optimum doping. For∂n/∂p = 0, γp is a minimum at
optimum doping, and in the overdoped region it retraces the path as for the underdoped
samples (this occurs because of the symmetry ofγp aroundn = 1 in this case). A non-zero
value of∂n/∂p breaks the symmetry ofγp aroundn = 1. For ∂n/∂p > 0, γp is larger in
the underdoped region, and the rate of fall ofγp with carrier concentration is higher than
in the ∂n/∂p = 0 case. In the overdoped region,γp is negative provided that∂n/∂p is
appreciable. In high-Tc oxides the pressure coefficient is positive and large for underdoped
samples, and decreases with increasing carrier concentration. Thus the behaviour ofγp
obtained in our study agrees qualitatively with the experimental results for high-Tc oxide
systems.
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6. Summary

We have investigated the d-wave superconductivity in the framework of the extended
Hubbard model, with nearest-neighbour (t) and second-nearest-neighbour (t2) hopping,
within mean-field approximations—namely the HF approximation for the weak-correlation
case and theX-operator technique for the strong-correlation case. Fort2 = 0 the maximum
in Tc and1 occurs at zero chemical potential, which corresponds ton = 1 for the weak-
correlation case andx = 1/3 for the strong-correlation case [4]. With the introduction of
t2, the superconducting phase diagram shifts to the higher- or lower-electron-concentration
side depending on whether the sign oft2/t is positive or negative. It is found that the effect
of t2 on the maximum transition temperature (T mc ) depends on the values oft2 andv/t . For
low values ofv/t , T mc rises witht2 for |t2/t | 6 0.5. For higher values oft2, T mc decreases
with increasingt2. The maximum superconducting gap ratio is found to increase from 4.39
to 4.79 ast2 is increased from 0 to 0.4t for v/t = 1.

The isotope-shift exponent in this model is examined by assuming isotopic mass
dependence oft and v. For ∂ ln v/∂ lnM < ∂ ln t/∂ lnM, the behaviour of the isotope-
shift exponent is found to be similar in nature to that of high-Tc oxide systems. The
isotope-shift exponent is large for underdoped systems, and attains a minimum at optimum
doping. It is interesting to note that we obtain very similar variations ofα with Tc for the
weak- and strong-correlation cases. For large values oft2, relevant for high-Tc cuprates [7],
the theoretical curves forα agree reasonably well with the experimental data points.

The pressure coefficient is investigated by assuming pressure dependence oft , v, andn.
The pressure coefficient is found to be large for underdoped systems, and low at optimum
doping. For∂n/∂p > 0, the pressure coefficient may be negative in the overdoped region.
These results are qualitatively consistent with the experimental findings for high-Tc systems.
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